| Bienvenido, Invitado |
Tienes que registrarte para poder participar en nuestro foro.
|
| Últimos temas |
Where is the YouTube vide...
Último mensaje por: john9
11-16-2025, 04:47 AM
|
Difference between TF Ord...
Último mensaje por: mallika9
11-04-2025, 02:28 AM
|
Introduction of TF Orderf...
Último mensaje por: rpsvinod
10-16-2025, 03:30 PM
|
indicador VSA volume spre...
Último mensaje por: GSERNAR
05-01-2025, 06:05 PM
|
Membership
Último mensaje por: qyfmsb
04-18-2025, 11:50 AM
|
pipflow 2.1 - footprint -...
Último mensaje por: roddizon1978
04-13-2025, 06:16 PM
|
Lag detection on charts
Último mensaje por: qyfmsb
09-11-2024, 11:12 AM
|
Registration problems fix...
Último mensaje por: qyfmsb
08-18-2024, 10:35 AM
|
Volume profile edu
Último mensaje por: qyfmsb
07-15-2024, 07:20 PM
|
Utility to change priorit...
Último mensaje por: qyfmsb
07-15-2024, 05:28 PM
|
Alerts by Telegram
Último mensaje por: waldo
02-17-2024, 01:54 PM
|
Order Flow Kit v2.6 Educa...
Último mensaje por: waldo
11-17-2023, 11:41 AM
|
Kit de Order Flow Educati...
Último mensaje por: waldo
11-17-2023, 09:01 AM
|
Indicador POC dinámico Ni...
Último mensaje por: Annaseher
11-15-2023, 06:48 AM
|
Applying TF Orderflow Too...
Último mensaje por: Ruberr
09-20-2023, 07:51 AM
|
|
|
| Differentiable Neural Computers (Neural Networks with external memory) |
|
Enviado por: waldo - 04-12-2017, 02:52 AM - Foro: Neural Networks
- Sin respuestas
|
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning,
but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to
the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer
(DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the
random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent
and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained
with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate
reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest
path between specified points and inferring the missing links in random...
|
|
|
|